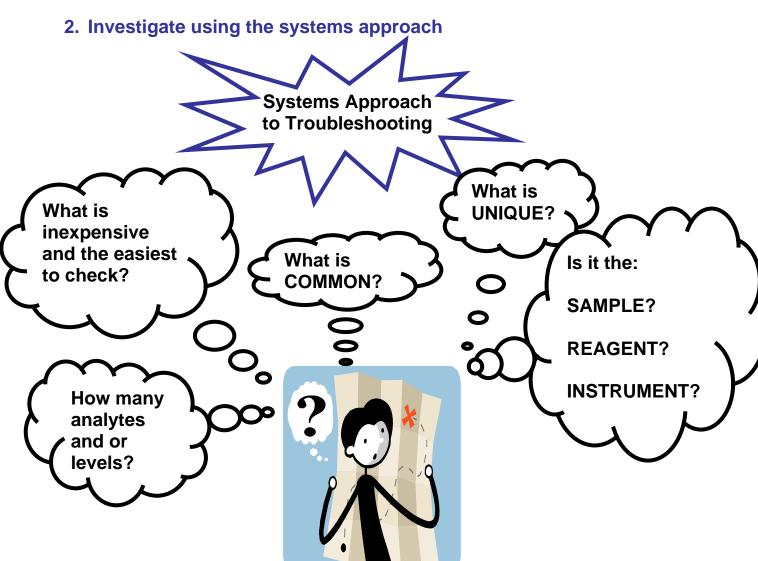


UniCel® DxI 600/800 Troubleshooting Job Aid

UniCel Dxl 600/800 Troubleshooting Job Aid

Table of Contents


Troubleshooting Process	4
Calibration Troubleshooting	
Quality Control Troubleshooting	
Patient Sample Troubleshooting	
Hardware Troubleshooting	10

Troubleshooting Process

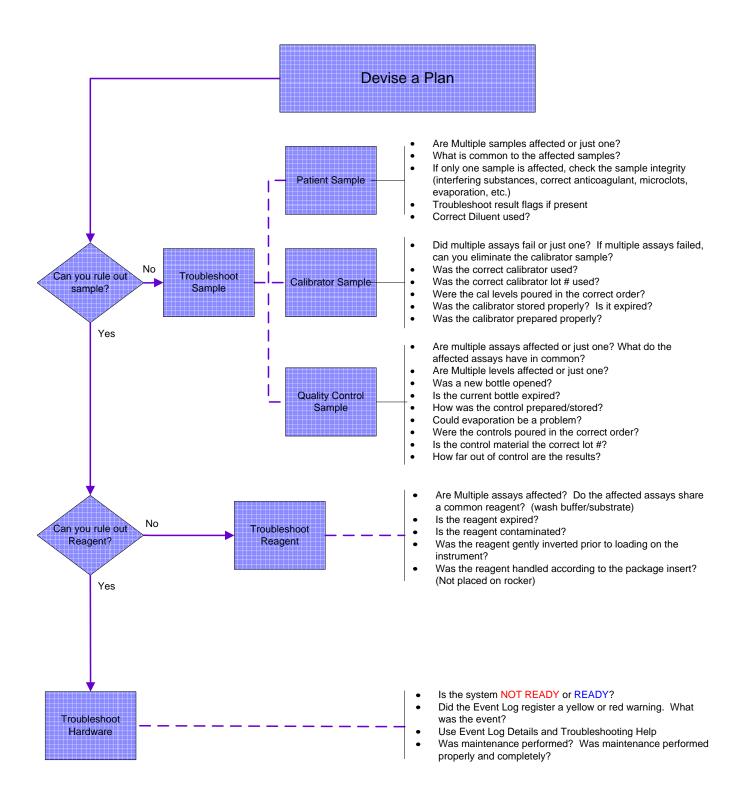
1. Identify the problem using clues

- Observed Problem
- Event Log entry
- Calibration failure
- Quality Control out
- Unexpected Patient Results
- System Check failure

3. Use investigation and resources to devise a plan

- Systems approach
- Help System
- Troubleshooting Log
- Coworkers
- Hotline
- Diagnostic tests

4. Implement the plan


• Perform identified corrective action

5. Evaluate effectiveness

- Continue investigation
- Problem resolved

Calibration Troubleshooting

- Identify the failure code
- Identify any flags

Compare Last and Active with Previously Active Curves

- Review the precision of the calibrator points
- Review the curve for flatness
- Determine whether the RLUs of the points rose steadily (sandwich) or dropped steadily (competitive)

Review Investigation

- Verify calibrator storage
- Confirm maintenance was performed
- Review that the printed target concentration match those on the cal card
- Confirm Calibrators were processed in racks designated for the container used
- Confirm calibrators were stored/prepared properly

General Guidelines

-Operator Error

- Usually the precision is good but there is something else wrong that is detectable by viewing the curve
- The graph often points to the error

-System Error

- Often shows up as poor precision at one or more points
- May show up on more than one assay
- Many system problems look similar
- Perform System Check to aid in diagnosing problem

-Reagent Problems

The curve may appear normal

Quality Control Troubleshooting

Review Levey Jennings

- How are QC Statistics handled?
- Is the imprecision consistent with the product insert?
- Were the mean and SD developed on your own instrument?
- Were proper statistical procedures followed to establish mean and SD?
- Are means and SDs within range of the QC peer group data?
- Are QC rules interpreted consistently by all lab personnel?
- Did you check with the manufacturer of the control material?

Establishing Control Ranges

-Gathering Data

- Run 1-2 replicates of each control each day (vary the sequence of processing)
- If one replicate is run, record that value. If 2 values are run, record both values.
- Obtain a minimum of 15 values of control on at least 3 different calibration curves (45 values minimum). Use both fresh and stored curves.
- Use 2 lots of reagent and two lots of calibrator if available.

-Calculating Ranges

- Calculate mean, %CV, 2SD and 3SD values
- Perform outlier evaluation
 - >Remove any values ouside of the 3 SD range and recalculate the statistics
 - >If the %CV is <6, consider widening the ranges by multiplying the stated SD by 1.5 then recalculated the 1SD, 2SD, and 3SD ranges
- Many system problems look similar
- Perform System Check to aid in diagnosing problem

Review Investigation

- Verify control storage/expiration date
- Confirm maintenance was performed correctly
- Review that the lot number is correct
- Review calibration curve

General Guidelines

-Accompanying errors

- Event Log message-troubleshoot first
- Result Flags-troubleshoot first

-Multiple Assays affected

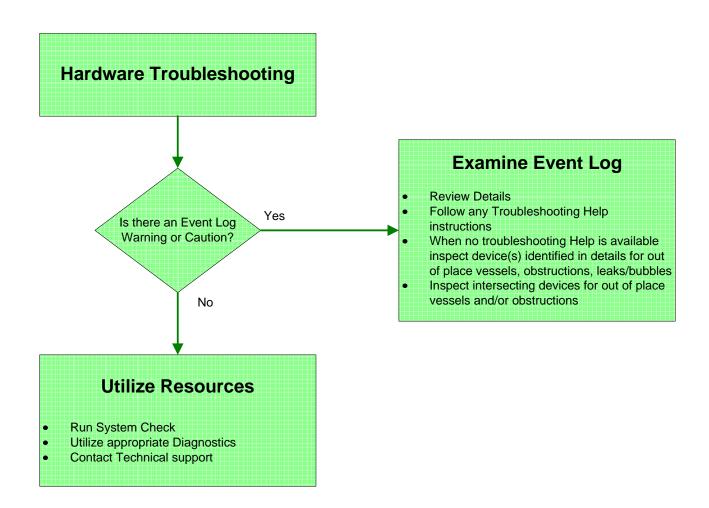
- Suspect QC material or hardware
- If only one level affected, suspect QC material

-Erratic QC

- Process System Check for additional information
- -QC trending
- Recalibrate

-QC shifts

What changed?


Patient Sample Troubleshooting

Was the sample handled correctly in the preanalytical phase?

- Approved anticoagulant?
- Correct fill volume?
- Tube mixed appropriately?
- Correct draw order?
- Sample prepared within acceptable time limit?
- Sample clotted per tube manufacturer and NCCLS guidelines?
- Centrifuged appropriately?
- Stored properly? (frozen in non-frost-free freezer, stored in appropriate cryovials)
- Thawed at room temp if appropriate?
- Centrifuged after thaw?
- Was sample re-centrifuged prior to testing?

Interferences

- Human Mouse Antibodies
- Heterophile Antibodies
- Anticoagulants
- Lipemia/hemolysis/icterus
- Check package insert

